www.rsc.org/dalton

Synthesis and complexation of the mixed tellurium–oxygen macrocycles 1-tellura-4,7-dioxacyclononane, [9]aneO₂Te, and 1,10-ditellura-4,7,13,16-tetraoxacyclooctadecane, [18]aneO₄Te₂ **and their selenium analogues**

Matthew J. Hesford, William Levason, Melissa L. Matthews and Gillian Reid

Department of Chemistry, University of Southampton, Southampton, UK SO17 1BJ. E-mail: wxl@soton.ac.uk

Received 25th March 2003, Accepted 29th May 2003 First published as an Advance Article on the web 20th June 2003

1,10-Ditellura-4,7,13,16-tetraoxacyclooctadecane ([18]aneO**4**Te**2**) has been synthesised in good yield (50–55%) from Na**2**Te and ClCH**2**CH**2**OCH**2**CH**2**OCH**2**CH**2**Cl in liquid ammonia, and fully characterised by NMR spectroscopy $(^\text{1}H, \text{ }^\text{13}C\{^\text{1}H\})$ and mass spectrometry, and by the preparation of the Te(IV) derivatives [18]aneO₄Te₂Me₂I₂ and $[18]$ ane $O_4Te_2Cl_4$. A minor by-product (*ca*. 4%) of the preparation is 1-tellura-4,7-dioxacyclononane ([9]ane O_2Te) which has been isolated and similarly characterised. The corresponding reaction of Na₂Se with ClCH₂CH₂OCH₂CH₂-OCH**2**CH**2**Cl in liquid ammonia is less satisfactory and gives variable yields of 1,10-diselena-4,7,13,16-tetraoxacyclooctadecane ([18]aneO**4**Se**2**), which is better obtained from the same reagents in ethanol solution under high dilution conditions. [18]aneO₄Se, has also been thoroughly characterised spectroscopically. In these reactions the ninemembered ring 1-selena-4,7-dioxacyclononane is generally produced only in trace amounts. A range of complexes of [18]aneO**4**Te**2** (L) in which the ligand behaves only as a Te**2** donor has been synthesised, including *cis*-[MX**2**L] $(M = Pd$ or Pt, $X = Cl$ or Br), $[RhCl_2L_2]Y (Y = Cl$ or PF_6 , $[CuL_2]BF_4$, $[AgL_3]BF_4$ and $[Cu, L][BF_4]$. The complexes have been characterised by microanalysis, multinuclear NMR spectroscopy (**¹** H, **¹²⁵**Te{**¹** H}, **¹⁹⁵**Pt, **⁶³**Cu), ES mass spectrometry, UV/visible and IR spectroscopy as appropriate. Two complexes of [9]aneO**2**Te, *cis*-[MCl**2**{[9]aneO**2**Te}**2**] $(M = Pd$ or Pt) are also reported, together with the selenoether complex $[PtCl₂{[18]aneO₄Se₂]}$. The X-ray structures of [MCl**2**{[18]aneO**4**Te**2**}] (M = Pt or Pd) and [PtCl**2**{[18]aneO**4**Se**2**}] all reveal *cis* square planar coordination with no interaction between the metal and the ether oxygens.

Introduction

We are exploring the synthesis and coordination chemistry of polydentate and macrocyclic ligands containing tellurium. Such ligands have been obtained only relatively recently,**¹** much later than sulfur or even selenium analogues, a reflection of the weaker and more reactive Te–C bonds which makes for more challenging syntheses. Our recent contributions to the area include: the complexation of the tripodal $Me(CH_2TeR)$ ₃ (R = Ph or Me) with a variety of metals in both medium and low oxidation states;**2–4** the synthesis and complexation of the first facultative tritelluroethers $Te(CH_2CH_2CH_2TeR)_2^2$ and of the related $Te(CH_2CH_2CH_2SMe)_{2}$ ⁶ the synthesis of the small ring S**2**Te macrocycles, [9]aneS**2**Te (1-tellura-4,7-dithiacyclononane), [11]aneS₂Te (1-tellura-5,8-dithiacycloundecane) and [12]aneS**2**Te (1-tellura-5,9-dithiacyclododecane).**⁷** Analogues with lighter chalcogens, [9]aneO₃ (1,4,7-trioxacyclononane), [9]aneO₂S (1-thia-4,7-dioxacyclononane) and [9]aneOS₂ (1,4dithia-7-oxacyclononane), have long been known, although little studied.⁸ This is in contrast to [9]aneS₃, which has played a central role in the development of thioether macrocyclic chemistry.**⁹** The selenium analogue [9]aneO**2**Se (1-selena-4,7 dioxacyclononane) has been observed as an unexpected ring contraction product of the reaction of BrCH₂CH₂OCH₂-CH**2**OCH**2**CH**2**Br, NCSeCH**2**CH**2**SeCN and NaBH**4**. **¹⁰** The 18-membered ring 1,10-dithia-4,7,13,16-tetraoxacyclooctadecane [18]aneO**4**S**2**, is well known and a range of metal complexes has been described,**8,11–19** but the selenium analogue 1,10-diselena-4,7,13,16-tetraoxacyclooctadecane, [18]aneO₄Se₂, has been mentioned in only two publications,**10,20** and other Se/O macrocycles have been little studied.¹ Only one Te₃ macrocycle, 1,5,9-tritelluracyclododecane, is known.²

Here we report the synthesis of two new Te–O macrocycles 1,10-ditellura-4,7,13,16-tetraoxacyclooctadecane [18]aneO**4**Te**²** (**I**) and 1-tellura-4,7-dioxacyclononane [9]aneO**2**Te, (**II**) and

the characterisation of a range of derivatives and metal complexes involving coordination *via* the Te atoms. More limited studies on the corresponding selenium/oxygen macrocycles are also included.

Results and discussion

Ligand synthesis

The new macrocycle, [18]aneO₄Te₂, has been obtained in good yield (*ca.* 50–55%) by reaction of Na₂Te with ClCH₂CH₂-OCH**2**CH**2**OCH**2**CH**2**Cl in liquid ammonia. The reaction is convenient in that there is no need to use high dilution conditions. Recrystallisation from CH**2**Cl**2**–Et**2**O under nitrogen gave the [18]aneO**4**Te**2** as a yellow, slightly air-sensitive solid, which was fully characterised by ${}^{1}H$, ${}^{13}C\{{}^{1}H\}$ and ${}^{125}Te\{{}^{1}H\}$ NMR spectroscopy, the δ ⁽¹²⁵Te) of 176 being a particularly useful fingerprint. The EI mass spectrum showed a multiplet at *m*/*z ca.* 488 with the correct isotope pattern for the parent ion. Fig. 1 shows this parent ion and the calculated pattern. It is possible that in the formation of $[18]$ ane O_4Te_2 , the Na⁺ present may have a templating effect *via* interactions with the ether functions. Electrospray mass spectra obtained from solutions of [18]aneO**4**Te**2** and NaCl in CH**2**Cl**2**–MeCN show a strong multiplet at m/z ca. 511 corresponding to $\{[18]$ ane O_4Te_2 .Na $\}^+$,

Fig. 1 The isotope patterns in the EI mass spectrum of the parent ions of (a) [18]aneO**4**Te**2** and (b) [9]aneO**2**Te and their simulated patterns.

whereas other alkali metal cations fail to give similar ions. We also note that the corresponding cyclisation reactions using the thioether precursors $Cl(CH_2)_nS(CH_2)_nS(CH_2)_nCl$ (*n* = 2 or 3), which are not expected to interact significantly with Na^+ , give the $[1 + 1]$ cyclisation products, and no evidence for higher rings.**⁷**

Careful examination of the crude products from this synthesis by $^{125}Te{^1H}$ NMR revealed weak resonances at δ 288 and 200 which were lost in the purification. In order to separate these products, the crude reaction mixture was dissolved in $CH₂Cl₂$ and adsorbed onto a silica column. Elution with hexane–ethyl acetate gave first a very small amount of yellow oil (δ 288) probably a ditelluride, and then a second fraction, which gave a yellow, air-sensitive solid identified as [9]aneO₂Te. The $[18]$ ane O_4 Te₂ does not elute and much was lost on the column, although some could be extracted from the silica with DMF.

The [9]aneO₂Te had generally similar ¹H and ¹³C{¹H} NMR spectra to those of $[18]$ ane O_4 Te₂ as would be expected, but is readily distinguished by its **¹²⁵**Te{**¹** H} NMR shift of 200 ppm and by its EI mass spectrum (Fig. 1). The yield of the small ring macrocycle is typically *ca.* 4% . The stability of the $-TeCH_2$ -CH**2**O– linkage is notable, since –TeCH**2**CH**2**Te– units do not form, instead $CH_2=CH_2$ is eliminated and ditellurides produced.**²²** The six-membered ring 1-tellura-4-oxacyclohexane is also known²³ and we conclude that the strong $-CH_2-OR$ bond probably prevents elimination of ethene.

We also explored the similar reaction of Na₂Se with ClCH₂-CH**2**OCH**2**CH**2**OCH**2**CH**2**Cl in liquid ammonia–thf, and found that a mixture of [9]aneO**2**Se and [18]aneO**4**Se**2** was produced. However, the reaction is much less satisfactory and yields are low. At -78 °C most of the α,ω-dichlorodiether was recovered, and even at the boiling point of ammonia ($-33 \degree C$), substantial amounts of ClCH₂CH₂OCH₂CH₂OCH₂CH₂Cl did not react, and variable yields and ratios of the macrocycles were obtained (together with much polymer) from reactions under apparently similar conditions. It seems likely that reaction of the α , ω -dichlorodiether with the less nucleophilic Se²⁻ is very incomplete at low temperature, and then occurs in an uncontrolled way on warming, resulting in poor yields of the macrocyclic compounds. The reaction was also carried out in ethanol by adding a dilute solution of ClCH₂CH₂OCH₂-CH**2**OCH**2**CH**2**Cl dropwise to a dilute solution of Na**2**Se in EtOH over 7hr. The mixture was worked up as described in the Experimental section. The crude product examined by **⁷⁷**Se NMR showed moderate amounts of $[18]$ ane O_4 Se₂, some [9]aneO₂Se, several resonances in the range δ 123–131 (which we attribute to oligomeric materials), and species with δ 226 and 312 which are probably diselenides. The GC/EI mass spectra confirmed the presence of all these species except the oligomers, which did not pass through the GC. Fractionation *in vacuo* separated the [18]aneO**4**Se**2** from the other products.

The $\{[18]$ ane O_4 Se₂–Na_{$\}$}⁺ system shows similar behaviour to the tellurium analogue with a strong multiplet of *m*/*z ca.* 413 in the $ES⁺$ mass spectrum, again suggesting that the sodium ion may have a templating role. As expected, the smaller ninemembered rings do not show association with $Na⁺$ in the $ES⁺$ mass spectra.

Organo-derivatives

The new telluroether macrocycles were characterised by quaternisation with MeI and, in the case of $[18]$ ane O_4Te_2 , by chlorination. Both reactions occur exclusively at the Te centres. Reaction of [18]aneO₄Te, with excess MeI in refluxing CH₂Cl₂ produced an orange solid identified by analysis as [18]aneO**4**- Te₂Me₂I₂. The ES^{$+$} mass spectra showed a complex ion cluster at *m/z ca.* 645 corresponding to $[P - I]^+$ and also an intense feature at m/z ca. 259 due to the ion $[P - 2I]^{2+}$. The quaternisation is accompanied by substantial high frequency shifts in the **1** H and **¹³**C{**¹** H} NMR resonances of the CH**2**Te groups, and the ¹²⁵Te $\{^1H\}$ resonance at 506 is typical of an R_3 TeI group.^{22,24} The corresponding data on [9]aneO₂TeMeI show similar ¹H, ¹³C{¹H} and ¹²⁵Te{¹H} (δ 520) NMR shifts and an ES⁺ mass spectrum multiplet at *m*/*z ca.* 261. The latter is distinguished from the $[P - 2I]^{2+}$ ion in the spectrum of $[18]$ aneO₄Te₂Me₂I₂ by the different isotope pattern and the half-mass separation between ion peaks in the dication.

Chlorination of $[18]$ aneO₄Te₂Cl₄, which has the characteristic Te(IV) chloride, $[18]$ aneO₄Te₂Cl₄, which has the characteristic Te() chloride, [18]aneO**4**Te**2**Cl**4**, which has the characteristic **¹²⁵**Te{**¹** H} chemical shift of 850 ppm.**²⁴** The EI mass spectrum shows a very weak parent ion, but $[P - Cl]$ ⁺ is intense and the identity is confirmed by the characteristic isotope pattern.

The two Se/O macrocycles were identified by comparison of their ¹H NMR spectra with literature data,^{10,20} by ¹³C{¹H} and **⁷⁷**Se{**¹** H} NMR spectroscopy and EI mass spectrometry (Experimental section). Quaternisation with MeI gave the corresponding $Se(V)$ compounds which have characteristic NMR shifts, 24 and distinctive ES^+ mass spectra.

Metal complexes

Dropwise addition of a dilute MeCN solution of $[PtX₂ (MeCN)_2$ (X = Cl or Br) or $[PdX_2(MeCN)_2]$ to a refluxing solution of [18]aneO**4**Te**2** in CH**2**Cl**2**/MeCN formed yellow solutions, which on work-up gave complexes of stoichiometry [MX**2**([18]aneO**4**Te**2**)]. These have UV/visible spectra typical of planar MX_2Te_2 species,^{25,26} and exhibit two $v(M-X)$ vibrations in their far IR spectra, consistent with *cis* isomers. This stereochemistry was confirmed by the X-ray structures (below). The **1** H NMR spectra contain overlapping multiplets in the range *ca*. δ 3.0–4.4, showing that the CH₂Te resonance in the free ligand (δ 2.8) has shifted to high frequency whilst the CH₂O resonances are essentially unchanged, again consistent with [18]aneO**4**Te**2** coordinated through Te. This is confirmed by the **¹²⁵**Te{**¹** H} (and where appropriate **¹⁹⁵**Pt{**¹** H}) NMR spectra). In CH_2Cl_2 solution the ¹²⁵Te{¹H} spectrum of [PtCl₂([18]ane O_4Te_2)] has $\delta = 393$ and satellites corresponding to $^1J(^{125}Te-$

¹⁹⁵Pt) = 862 Hz. The corresponding values for $[PtBr_2([18]-]$ ane O_4Te_2)] are $\delta = 390$ and ${}^1J({}^{125}Te-{}^{195}Pt) = 690$ Hz, $[PdCl_2([18] \text{ane} O_4 \text{Te}_2)]$ $\delta = 375$ and $[PdBr_2([18] \text{ane} O_4 \text{Te}_2)]$ δ = 370. The one-bond coupling constants are in the range reported for *cis-PtX*₂Te₂ entities, smaller values being seen in the *trans* isomers.**25,26** We have shown elsewhere **²⁵** that the coordination shifts in the **¹²⁵**Te NMR spectra are sensitive to chelate ring size. Thus, compared to the values in the analogous *cis*- $[PtX_2(R_2Te)_2]$ (preferably where the R-groups are similar to those in the bidentate ligands), five-membered chelate rings have very large positive coordination shifts, whereas sixmembered rings have markedly smaller ones, and fourmembered rings significantly negative values. In the present case the coordination shifts of *ca*. 200–220 are similar to those in [MX**2**(Me**2**Te)**2**], † which confirms that in the 11-membered rings present in $[MX_2([18] \text{ane} O_4Te_2)]$ the chelate ring parameter²⁵ is close to zero. The ¹⁹⁵Pt chemical shifts of -4257 (Cl) or -4756 (Br) are typical of *cis*-PtTe₂X₂ isomers, whereas values for the corresponding *trans* isomers are typically 400– 500 ppm to high frequency.**²** It proved difficult to obtain good quality **¹²⁵**Te or **¹⁹⁵**Pt NMR spectra from these complexes at ambient temperatures, although spectra were easily obtained from the same solutions at -50 °C. Similar problems were not present in the [9]aneO₂Te or the [18]aneO₄Se₂ complexes. This suggests some dynamic process is present in the $[18]$ ane O_4Te_2 complexes, which is slowed on cooling; presumably this is reversible chelate ring-opening.

If the reaction of $[MX_2(MeCN)_2]$ and $[18]$ aneO₄Te₂ in MeCN was carried out by rapidly mixing the reagents in concentrated solutions, immediate precipitation of yellow or orange–yellow solids occurred. These also had the composition [MX**2**{[18]aneO**4**Te**2**}], but were only very slightly soluble in CH₂Cl₂, the remaining residue being insoluble in chlorocarbons, MeCN or acetone, but dissolved slowly, probably with reaction, in DMSO. The UV/visible spectra of the insoluble compounds were typical of MX**2**Te**2** species, and their IR spectra generally similar to those of the soluble $[MX_{2}$ {[18]ane- O_4Te_2], except for differences in the far-IR metal–halogen region, where they were more complicated. The insolubility has limited full characterisation, but it is highly probable that the syntheses in concentrated solution yields a mixture of *cis*- [MX**2**{[18]aneO**4**Te**2**}] (the same species as described above from the high dilution preparations) and varying amounts of oligomeric $\{[MX_2\{[18]aneO_4Te_2\}]\}_n$. When $[18]aneO_4Te_2$ behaves as a bidentate Te₂ chelating ligand, two 11-membered rings are formed, in which the chelate effect will be minimal, and as in long chain diphosphines **²⁷** (little data are available on long chain Group 16 donor ligands) **¹** formation of a mixture of *cis* and *trans* oligomers/polymers is plausible.

The reaction of [9]aneO₂Te with $[MCl_2(MeCN)_2]$ (M = Pd or Pt) in MeCN proceeded straightforwardly to give $[MCl_2{\{\Theta\}an\Theta_2Te\}_2]$. In both cases the $^{125}Te{\{^1H\}}$ (and for the latter **¹⁹⁵**Pt) NMR spectra (CH**2**Cl**2**) solution indicated only one isomer. The $[PtCl_2\{[9] \text{ane} O_2 \text{Te}\}_2]$ had $\delta(^{195}Pt) = -4501$ and ¹ $J($ ¹²⁵Te^{$-$ 195}Pt) = 975 Hz consistent with a *cis* isomer,²⁵ and two ν(Pt–Cl) stretches in the far IR spectrum suggest this geometry is present in the solid also. It is not possible to distinguish *cis* and *trans* [PdCl**2**(R**2**Te)**2**] complexes from the **¹²⁵**Te chemical shifts which are quite similar,**²⁵** but the presence of a single δ ⁽¹²⁵Te{¹H}) resonance shows only a single isomer is present, and from the two Pd–Cl stretches in the far IR spectrum, it is likely that this too is a *cis* isomer. Few platinum metal complexes of small tellurium rings have been reported:

Table 1 Selected bond lengths (A) and angles (\degree) for *cis*-[PtCl₂{[18]aneO**4**Se**2**}]

$Pt(1)$ -Se (1)	2.391(2)	$Se(1) - C(1)$	1.96(2)
$Pt(1)-Se(2)$	2.390(2)	$Se(1)-C(12)$	1.95(2)
$Pt(1) - Cl(1)$	2.325(4)	$Se(2)-C(6)$	1.94(2)
$Pt(1) - Cl(2)$	2.334(4)	$Se(2) - C(7)$	1.98(2)
$Se(1) - Pt(1) - Se(2)$	86.57(6)	$Pt(1) - Se(1) - C(1)$	105.2(6)
$Se(1) - Pt(1) - Cl(1)$	91.59(11)	$Pt(1) - Se(1) - C(12)$	101.3(5)
$Se(1) - Pt(1) - Cl(2)$	178.30(12)	$C(1)$ -Se (1) -C (12)	96.1(7)
$Se(2) - Pt(1) - Cl(1)$	177.91(12)	$Pt(1) - Se(2) - C(6)$	103.1(6)
$Se(2) - Pt(1) - Cl(2)$	91.74(12)	$Pt(1)-Se(2)-C(7)$	102.4(5)
$Cl(1) - Pt(1) - Cl(2)$	90.1(2)	$C(6)-Se(2)-C(7)$	98.5(8)

in $[PtCl_2\{Te(CH_2)_2O(CH_2)_2\}$ ₂] the geometry is *trans* (from an X-ray structure of the solid),²⁸ whilst in complexes of $\overline{\text{Te(CH)}_2}$ (L') the $[PdX_2L'_2]$ $(X = Cl, Br \text{ or } I)$ and $[PtX_2L'_2]$ $(X = Br \text{ or } I)$ are *trans*, but [PtCl₂L'₂] is a mixture of both *cis* and *trans* forms.²⁹ The [PdCl₂L^{*n*}₂] (L^{*n*}= 1,3-dihydrobenzo[*c*]tellurophene) is *trans*, but the $[PtCl₂L''₂]$ is *cis*.³⁰ No clear pattern emerges from the literature data and the differences in isomer stabilities appear small.

One $Pt(II)$ complex of $[18]$ aneO₄Se, was made for comparison purposes; the [PtCl**2**{[18]aneO**4**Se**2**}] was similar to the [18]aneO**4**Te**2** analogue, and has corresponding UV/visible, IR and NMR spectra. Notably, the **⁷⁷**Se{**¹** H} NMR spectrum contains a single resonance at δ 259 with $^1J(^{195}Pt-^{77}Se)$ of 550 Hz, with δ ⁽¹⁹⁵Pt) -3861, similar to other *cis*-PtCl₂Se₂ chromophores.**26,31**

Small single crystals of [PtCl**2**{[18]aneO**4**Se**2**}] were obtained from CH_2Cl_2 and the structure of one of these (Table 1, Fig. 2) reveals the *cis* square planar geometry $(Se₂Cl₂)$ with no interaction between the Pt centre and the ether oxygens. The structures of $[PtCl₂{[18]aneO₄Te₂]}$ (Table 2, Fig. 3) and [PdCl**2**{[18]aneO**4**Te**2**}] (Table 3, Fig. 4) show very similar planar geometries, with angles at the metal close to 90°. The Cl–M–Cl angles are slightly greater than the Se(Te)–M–Se(Te) angles, though despite the large rings there is no evidence for significant distortion in the chelate rings. The two complexes of [18]ane- O_4Te_2 are isomorphous (P_2 ^t/*n*) but the [PtCl₂{[18]ane O_4Se_2 }] is isomorphous with the thioether analogues $[PdCl₂{18}]a$ neO_4S_2 ¹⁹ and $[PtCl_2\{[18]$ ane $O_4S_2\}]$ ¹⁶ which crystallise in the acentric space group *P*2**1**2**1**2**1**. The Pt–Se, Pt–Te and Pd–Te (all *trans* Cl) bond lengths are similar to those reported in other systems,**1,26** and the increase as the donor atoms descend Group 16 is in line with the increasing covalent radius of the donor. A comparison of the average $d(Pt-Cl)$ distances in $[PtCl₂$ ^{[18]-} ane O_4S_2 }] (2.32 Å),¹⁶ [PtCl₂{[18]ane O_4Se_2 }] (2.33 Å) and

Fig. 2 View of the structure of $[PCC_1_{2} \{ [18] \text{ane} O_4 \text{Se}_2 \}]$ with ellipsoids shown at the 40% probability level; H-atoms omitted for clarity.

[†] Since **¹²⁵**Te NMR shifts are sensitive to substituents at least as far as the γ carbon, and exact comparison with [18]aneO**4**Te**2** would need data on complexes of Te(CH₂CH₂OR)₂ which are not available. Data on Me**2**Te complexes are used: in practice the ring-size effects are sufficiently large that the trends appear reliable even in the absence of exact ligand analogues.**²⁵**

Table 2 Selected bond lengths (A) and angles (\degree) for *cis*-[PdCl₂{[18]aneO**4**Te**2**}]

$Te(1) - Pd(1)$	2.5567(5)	$Te(1) - C(1)$	2.157(5)
$Te(2) - Pd(1)$	2.5398(5)	$Te(1) - C(12)$	2.156(5)
$Pd(1) - Cl(1)$	2.3474(13)	$Te(2) - C(6)$	2.144(5)
$Pd(1) - Cl(2)$	2.3618(12)	$Te(2)-C(7)$	2.151(5)
$Pd(1) - Te(1) - C(1)$	100.3(1)	$Te(1) - Pd(1) - Te(2)$	88.29(2)
$Pd(1) - Te(1) - C(12)$	105.6(1)	$Te(1) - Pd(1) - Cl(1)$	89.98(3)
$C(1)$ -Te (1) -C (12)	92.8(2)	$Te(1) - Pd(1) - Cl(2)$	173.07(3)
$Pd(1) - Te(2) - C(6)$	100.73(13)	$Te(2) - Pd(1) - Cl(1)$	175.27(4)
$Pd(1) - Te(2) - C(7)$	100.09(13)	$Te(2) - Pd(1) - Cl(2)$	88.84(3)
$C(6)-Te(2)-C(7)$	96.4(2)	Cl(1) – Pd(1) – Cl(2)	93.35(4)

Fig. 3 View of the structure of [PtCl**2**{[18]aneO**4**Te**2**}] with ellipsoids shown at the 40% probability level; H-atoms omitted for for clarity.

[PtCl**2**{[18]aneO**4**Te**2**}] (2.35 Å) reveals a clear *trans* influence $S < S_e < T_e$. It is also informative to compare the corresponding Pd and Pt complexes for a common ligand. For [18]aneO₄S₂ and $[18]$ aneO₄Te₂ the *d*(M–E) (M = Pd or Pt, E = S or Te) are slightly shorter for $M = Pt$ (2.28, 2.53 Å respectively) than for $M = Pd$ (2.30 and 2.55 Å), whilst the *d*(M–Cl) appear to show the opposite effect, although less clearly, $M = Pt$ (2.32 and 2.35 Å) *vs*. M = Pd (2.31 and 2.35 Å).

The reaction of RhCl₃·3H₂O and [18]aneO₄Te₂ in EtOH– CH₂Cl₂ gave an orange–yellow complex [RhCl₂^{{[18]}ane- O_4Te_2 }₂]Cl, whilst in the presence of NH_4PF_6 the [RhCl₂{[18]ane O_4Te_2 }₂]PF₆ salt was isolated. Both complexes were very poorly soluble in CH₂Cl₂, acetone and MeCN which prevented poorly soluble in CH**2**Cl**2**, acetone and MeCN which prevented **¹²⁵**Te{**¹** H} NMR studies, but the presence of an ion multiplet in the ES^+ mass spectrum corresponding to $[RhCl_2\{[18]$ ane- O_4Te_2 ₂⁺ confirms the identity of the cation. The UV/visible spectrum has a d-d band at 28 820 cm⁻¹ which suggests a *cis* isomer (*trans* isomers have a markedly lower first d–d transition),**³²** and this is supported by the far-IR spectrum, with $v(Rh-Cl)$ at 335, 324 cm⁻¹, although the assignment of *cis* geometry is made tentatively in the absence of crystallographic or **¹²⁵**Te{**¹** H} NMR data.

The reaction of $\left[\text{Cu}(\text{MeCN})_4\right]BF_4$ with 2.2 mol. equivalents of [18]aneO**4**Te**2** in MeCN produced orange–brown [Cu{[18] ane O_4Te_2 ₂]BF₄. The ES⁺ mass spectrum (MeCN solution) shows ions corresponding to $\text{[Cu}\{\text{[18]aneO}_4\text{Te}_2\}_n\}^+$ (*n* = 2 or 1). The **¹** H NMR spectrum shows a broad CH**2**Te resonance at δ 2.9, a high frequency shift from that in the free ligand (δ 2.78), but the CH₂O resonances are unshifted from those of the free ligand. The **¹²⁵**Te{**¹** H} NMR spectrum shows a broad resonance at δ 166 which corresponds to a coordination shift of -10; small low frequency coordination shifts are normal for $Cu(I)$ telluroethers.³³ Addition of varying amounts of $[18]$ ane O_4Te_2 to the NMR solution resulted in single **¹²⁵**Te{**¹** H} resonances with shifts which varied with the temperature and with added ligand,

Table 3 Selected bond lengths (A) and angles (\degree) for *cis*-[PtCl₂{[18]aneO**4**Te**2**}]

$Pt(1)-Te(1)$	2.5357(6)	$Te(1) - C(1)$	2.164(9)
$Pt(1)-Te(2)$	2.5322(6)	$Te(1) - C(12)$	2.159(8)
$Pt(1)$ –Cl(1)	2.344(2)	$Te(2)-C(6)$	2.156(9)
$Pt(1) - Cl(2)$	2.356(2)	$Te(2)-C(7)$	2.161(9)
$Te(1) - Pt(1) - Te(2)$	88.81(2)	$Pt(1) - Te(1) - C(1)$	105.5(2)
$Te(1) - Pt(1) - Cl(1)$	90.87(6)	$Pt(1) - Te(1) - C(12)$	101.7(2)
$Te(1) - Pt(1) - Cl(2)$	174.96(6)	$C(1)$ -Te (1) -C (12)	93.0(3)
$Te(2) - Pt(1) - Cl(1)$	176.12(6)	$Pt(1) - Te(2) - C(6)$	101.2(3)
$Te(2) - Pt(1) - Cl(2)$	89.68(5)	$Pt(1)-Te(2)-C(7)$	100.6(2)
$Cl(1) - Pt(1) - Cl(2)$	90.97(7)	$C(6)-Te(2)-C(7)$	95.5(3)

Fig. 4 View of the structure of [PdCl**2**{[18]aneO**4**Te**2**}] with ellipsoids shown at the 40% probability level; H-atoms omitted for for clarity.

showing evidence for fast exchange between the solution species. The pure complex does not exhibit a **⁶³**Cu NMR spectrum, but in the presence of excess $[18]$ ane O_4Te_2 , the solution showed a broad ⁶³Cu NMR resonance at δ -59 ($w_{1/2}$ = 11 000 Hz) attributable to the tetrahedral [Cu{[18]aneO**4**Te**2**}**2**] (CuTe₄) in which the quadrupolar relaxation of the $\frac{63}{62}$ Cu nucleus has slowed significantly.**³³** Using an excess of [Cu- $(MeCN)₄|BF₄$ in the preparation resulted in a yellow complex of composition $\left[\text{Cu}_2\{\left[18\right] \text{aneO}_4 \text{Te}_2\}\right]$ $\left[\text{BF}_4\right]_2$, on the basis of microanalysis, which was insoluble in chlorocarbons or MeCN and is presumably oligomeric.

The reaction of AgBF_4 with $[18]$ ane O_4 Te₂ in a 1 : 2 molar ratio in MeCN gave a pale orange, light-sensitive solid of composition [Ag{[18]aneO**4**Te**2**}**2**]BF**4**. This was generally s imilar in properties to the copper (i) complex, although less stable. The broad **¹** H and **¹²⁵**Te{**¹** H} NMR resonances observed from CD_2Cl_2 solutions of the complex at room temperature suggest fast dissociation/exchange. Again the **¹²⁵**Te{**¹** H} coordination shift was negative, consistent with reports on other Ag() telluroethers.**³⁴** As for the analogous copper system, it proved possible to isolate a complex with a 2 : 1 AgBF**4** : [18]aneO**4**Te**2** stoichiometry, but this was insoluble in common solvents and was not further studied.

Experimental

Physical measurements were made as described previously.**2–5** All preparations were carried out under dinitrogen.

Preparations:

$[9]$ **aneO₂Te** and $[18]$ **aneO₄Te**₂

Sodium (1.48 g, 0.064 mol) was added over a few min to liquid ammonia (600 cm³) at -78 °C, followed by freshly ground tellurium powder (3.28 g, 0.026 mol). The mixture was allowed

to warm until a white precipitate of Na₂Te was observed, and then re-cooled to -78 °C. A solution of ClCH₂CH₂OCH₂-CH**2**OCH**2**CH**2**Cl (4.81 g, 0.026 mol) in dry THF (100 cm**³**) was added dropwise over a period of 30 min to the stirred solution, and then the mixture allowed to warm slowly to room temperature overnight. The yellow–orange mixture was hydrolysed with water (200 cm³) extracted with CH_2Cl_2 (2 \times 200 cm³) and the organic extracts combined, dried (MgSO**4**) and filtered to produce a clear orange solution. The solvent was removed to give a pale orange solid which was recrystallised from CH_2Cl_2 – Et₂O at -18 °C. Yield 3.39 g, 54%. This was identified as [18]aneO**4**Te**2**: mp 49 C. **¹** H NMR (CDCl**3**): δ 2.80 (t) [8H] CH₂Te, 3.57 (s) [8H] OCH₂CH₂O, 3.85 (t) [8H] TeCH₂CH₂O. **¹³C**{¹H} NMR (CDCl₃): δ 2.6 CH₂Te, 70.0, 73.4 CH₂O. H} NMR (CDCl**3**): δ 2.6 CH**2**Te, 70.0, 73.4 CH**2**O. **¹²⁵**Te{**¹** H} NMR (CH**2**Cl**2**): δ 176. EI mass spectrum: *m*/*z* 488; calc. for $[C_{12}H_{24}O_4^{128}Te_2]^+$, $[C_{12}H_{24}O_4^{126}Te^{130}Te]^+$ 488.

Isolation of [9]aneO₂Te. Examination of the crude solid obtained above by **¹²⁵**Te{**¹** H} NMR revealed very weak resonances at δ 288 and 200, which were lost upon recrystallisation. In an alternative work up, the crude product was dissolved in CH**2**Cl**2** and adsorbed onto a silica column and eluted with 3 : 1 hexane–ethyl acetate. The first fraction contained a small amount of orange oil δ ¹²⁵Te (CH₂Cl₂) = 288]. The remaining fractions had identical **¹²⁵**Te{**¹** H} NMR spectra and were combined and the solvent removed to give a yellow solid (0.31 g, *ca.* 4% based on Te) identified as [9]aneO**2**Te: mp 70–72 C. **¹** H NMR (CDCl**3**): δ 2.85 (t) [4H] CH**2**Te, 3.65 (s) [4H] OCH**2**- CH₂O, 3.8 (t) [4H] TeCH₂CH₂O. ¹³C{¹H} NMR (CDCl₃): δ 2.2 CH**2**Te, 70.3, 74.0 CH**2**O. **¹²⁵**Te{**¹** H} NMR (CH**2**Cl**2**): δ 200. EI mass spectrum: m/z 246; calc. for $[C_6H_{12}O_2^{130}Te]^+$ 246.

The bulk of the material (18) ane O_4Te_2) did not elute, although some could be re-extracted from the silica by stirring overnight in *N*,*N*-dimethylformamide. However, substantial amounts of the 18-membered ring compound were lost in this process.

$[9]$ **aneO₂Se and** $[18]$ **aneO₄Se**₂

Method 1. A solution of Na**2**Se in liquid ammonia (600 cm**³**) was generated from sodium (1.72 g, 0.075 mol) and freshly ground selenium powder (2.36 g, 0.03 mol). A solution of ClCH**2**CH**2**OCH**2**CH**2**OCH**2**CH**2**Cl (5.60 g, 0.03 mol) in dry THF (100 cm**³**) was added over a period of approximately 2 h, at the boiling point of the ammonia $(-33 \degree C)$, to give a pale cream mixture. This was then allowed to warm to room temperature overnight, gently refluxed for 30 min and then hydrolysed with water (200 cm³). The mixture was extracted with CH_2Cl_2 $(2 \times 200 \text{ cm}^3)$ and the extracts combined and dried over MgSO₄. Filtration and removal of the solvent gave a yellow oil (4.46 g). Kugelröhr distillation (0.2 mmHg) gave low boiling selenium free fractions, and at 200 $^{\circ}$ C a yellow oil, leaving an involatile red–brown solid. This oil contained highly variable amounts of [9]aneO₂Se and [18]aneO₄Se₂ (by ⁷⁷Se{¹H} NMR). In some cases only traces of [9]aneO₂Se were present, while in others [9]aneO**2**Se dominated. If separation proved necessary, it was achieved by careful sublimation of the oil *in vacuo* onto a liquid nitrogen cold finger which separated [9]aneO**2**Se as a yellow oil and the less volatile residue was [18]aneO**4**Se**2**.

 $[9]$ **aneO₂Se.** ¹H NMR (CDCl₃): δ 2.90 (t) [4H] CH₂Se, 3.65 (s) [4H], 4.10 (t) [4H] CH₂O. ¹³C{¹H} NMR (CDCl₃): δ 23.3 CH₂Se, 72.5, 75.5 CH₂O. ⁷⁷Se{¹H} NMR (CH₂Cl₂): δ 204. EI mass spectrum: *m*/*z* 196; calc. for [C**6**H**12**O**² ⁸⁰**Se] 196.

 $[18]$ **aneO₄Se₂.** ¹H NMR (CDCl₃): δ 2.78 (t) [8H] CH₂Se, 3.59 (s) [8H] CH**2**O, 3.73 (t) [8H] SeCH**2**C*H***2**O. **¹³**C{**¹** H} NMR (CDCl**3**): δ 23.5 CH**2**Se, 71.3, 71.5 CH**2**O. **⁷⁷**Se{**¹** H} NMR (CH₂Cl₂): δ 144. EI mass spectrum: mlz 392; calc. for $[C_{12}H_{24}O_4^{80}Se_2]$ ⁺ 392.

Method 2. Sodium (1.72 g, 0.075 mol) and freshly ground selenium powder $(2.36 \text{ g}, 0.03 \text{ mol})$ were added to liquid NH₃ (300 cm**³**) in a 2 l flask, and the mixture left to warm to room temperature overnight to form Na₂Se. This was redissolved in dry EtOH (1 l.) and Cl(CH**2**)**2**O(CH**2**)**2**O(CH**2**)**2**Cl (5.60 g, 0.03 mol) in EtOH (1 l.) added slowly dropwise to the solution at room temperature over the course of 7 h. The mixture was then stirred overnight at room temperature and refluxed for 1 h before allowing it to cool. It was hydrolysed with water (100 cm**³**), filtered, and the solvent removed. The residue was extracted with CH_2Cl_2 (2 × *ca*. 60 cm³). The extracts were combined, dried over MgSO**4**, filtered and the solvent removed *in vacuo* to produce a viscous yellow oil. Yield 5 g. This was then recrystallised (CH₂Cl₂–hexane) to produce crude solid [18]ane O_4 Se₂ (1 g). The mother-liquor was evaporated and the residue Kugelröhr distilled to produce four fractions. Fraction 1 distilled at ≤125 °C (2 mmHg) and was [9]aneO₂Se (δ ⁷⁷Se{¹H} = 203), yield 0.25 g. Fractions 2 and 3 both distilled at ≤ 200 °C (2 mmHg) ; fraction 2 was largely diselenide $(\delta^{77}$ Se $\{^1\text{H}\} = 227)$, y ield 0.09 g, while fraction 3 (δ^{77} Se $\{^{1}$ H $\}$ = 144) was [18]aneO₄Se₂ yield 0.050 g. A red–brown residue remained.

$[18]$ **aneO₄** $Te_2Me_2I_2$

Iodomethane (1 cm**³**) was added to a solution of [18]aneO**4**Te**²** $(0.08 \text{ g}, 0.15 \text{ mmol})$ in CH_2Cl_2 (40 cm³) and the mixture gently refluxed for 30 min. The volume was reduced (10 cm**³**) and added to ice-cold Et₂O to produce a pale yellow solid which, when dried *in vacuo*, quickly turned into a waxy orange solid. Yield 0.13 g, 83% (Found: C, 20.8; H, 3.7. Calc. for C**14**H**30**- I**2**O**4**Te**2**CH**2**Cl**2**: C, 20.4; H, 3.6%). **¹** H NMR (d**⁶** -DMSO): δ 2.3 (s) [3H] MeTe, 3.2 (m) [4H] CH**2**Te, 3.6, 3.9 (m) [8H] CH**2**O, 5.4 (s) [H] CH**2**Cl**2**. **¹³**C{**¹** H} NMR (DMSO): δ 4.3 MeTe, 25.9 CH**2**Te, 57.0 CH**2**Cl**2**, 66.2, 69.9 CH**2**O. **¹²⁵**Te{**¹** H} (DMSO): δ 506. ES⁺ mass spectrum: *m/z* 645; calc. for $[C_{14}H_{30}O_4^{126}]$ $Te^{130}TeI$ ⁺ and $[C_{14}H_{30}O_4^{128}Te_2I]$ ⁺ 645.

[9]aneO2TeMeI

 $[9]$ aneO₂Te (0.08 g, 0.33 mmol) was dissolved in CH₂Cl₂ (40 cm**³**), MeI (1 cm**³**) added and the mixture refluxed for 1 h. The resulting pale yellow solution was concentrated and the product precipitated by diethyl ether. The solid was filtered off and dried *in vacuo*. Yield 0.096 g, 75% (Found: C, 21.6; H, 3.7. Calc. for C**7**H**15**IO**2**Te: C, 21.8; H, 3.9%). **¹** H NMR (d**⁶** -DMSO): δ 2.3 (s) [3H] MeTe, 3.25 (m) [4H] CH**2**Te, 3.60, 3.85 (m) [8H] CH**2**O. **¹³**C{**¹** H} NMR (DMSO): δ 2.0 MeTe, 24.9 CH**2**Te, 64.5, 68.4 CH₂O. ¹²⁵Te{¹H} (DMSO): δ 520. ES⁺ mass spectrum: mlz 261; calc. for $[C_7H_{15}O_2^{130}Te]^+$ 261.

$[18]$ **aneO₄** Te_2Cl_4

Chlorine was bubbled through a solution of $[18]$ aneO₄Te₂ (0.10 g, 0.20 mmol) in CH**2**Cl**2** (40 cm**³**) for 1 min. The reaction was stirred at room temperature for 30 min, reduced in volume (5 cm^3) and the product precipitated with ice-cold Et₂O. The precipitate was filtered and dried *in vacuo* to give a white solid (0.13 g, 99%). The solid darkened on storage (Found: C, 21.0; H, 3.4. Calc. for C**12**H**24**Cl**4**O**4**Te**2**.CH**2**Cl**2**: C, 21.8; H, 3.6%). **¹** ¹H NMR (CDCl₃): δ 4.2 (m) [H] CH₂Te, 3.6–3.8 (m) [4H] CH₂O. 5.4 CH₂Cl₂. ¹³C{¹H} NMR (CH₂Cl₂): δ 15.5 CH₂Te, 65.4, 66.0 CH₂O. ¹²⁵Te{¹H} (CH₂Cl₂): δ 850. ES⁺ mass spectrum: $m/z = 595$; calc. for $[C_{12}H_{24}^{35}Cl_2^{37}ClO_4^{126}Te^{130}Te]$ ⁺ and $[C_{12}H_{24}^{35}Cl_2^{37}ClO_4^{128}Te_2]^+$ 595.

$[18]$ ane O_4 Se₂Me₂I₂

[18]aneO**4**Se**2** (0.07 g, 0.018 mmol) was gently refluxed with excess iodomethane (1 cm^3) in CH_2Cl_2 (30 cm^3) for 1 h, then concentrated and pipetted into ice-cold Et₂O, producing a precipitate that was filtered off, and dried *in vacuo* to give a yellow solid. Yield 0.05 g, 43% (Found: C, 25.3; H, 4.3. Calc. for C**14**H**30**I**2**O**4**Se**2**: C, 24.9; H, 4.1%). **¹** H NMR (d**⁶** -DMSO):

Table 4 Crystallographic parameters

δ 2.90 [6H] Me, 3.78 (t) [8H] CH**2**Se, 3.59 (s) [8H] CH**2**O, 3.80 (t) [8H] SeCH₂CH₂O. ¹³C{¹H} NMR (CDCl₃): δ 19.2 Me, 24.6 CH₂Se, 65.5, 70.1 CH₂O. ⁷⁷Se $\{^1H\}$ NMR (CH₂Cl₂): δ 318. ES⁺ mass spectrum: m/z 549, 211; calc. for $[C_{14}H_{30}IO_{4}^{80}Se_{2}]^{+}$ 549, $[C_{14}H_{30}O_4^{80}Se_2]^{2+}$ 211.

[9]aneO2SeMeI

The preparation was carried out similarly to that above. ¹H NMR (d⁶-DMSO): δ 2.90 [3H] Me, 3.65 (t) [4H] CH₂Se, 3.55 (s) [4H] CH**2**O, 3.70 (t) [4H] SeCH**2**C*H***2**O. **¹³**C{**¹** H} NMR (CDCl**3**): δ 22.6 Me, 43.4 CH**2**Se, 70.8, 71.6 CH**2**O. **⁷⁷**Se{**¹** H} NMR (CH₂Cl₂): δ 354. ES⁺ mass spectrum: m/z 211; calc. for $[C_7H_{15}IO_2^{80}Se]^+$ 211.

[PtCl2{[18]aneO4Te2}]

PtCl₂ (0.04 g, 0.15 mmol) was dissolved in refluxing MeCN (40 cm**³**), the solution cooled and filtered. It was then added dropwise to a gently refluxing solution of $[18]$ ane O_4Te_2 (0.075 g, 0.15) mmol) in CH**2**Cl**2** (25 cm**³**)–MeCN (100 cm**³**) over *ca*. 30 min. The solution was refluxed for 1 h, cooled and stirred overnight. It was filtered through Celite, concentrated to *ca*. 10 cm**³** and the product precipitated by slow addition of Et_2O (5 cm³). The yellow solid was filtered off and dried *in vacuo*. Yield 0.097 g, 76% (Found: C, 19.5; H, 3.0. Calc. for C**12**H**24**Cl**2**O**4**PtTe**2**: C, 19.3; H, 3.2%). *ν*(Pt–Cl)/cm⁻¹: 308, 291. UV/vis (CH₂Cl₂) \tilde{v}_{max} / cm⁻¹ ($\varepsilon_{\text{mol}}/\text{dm}^3$ mol⁻¹ cm⁻¹): 34 435 (4770), 25 560 (965). ¹H NMR (CDCl₃): δ 3.0–4.4 (m). ¹⁹⁵Pt NMR (CH₂Cl₂ 223 K): δ 4257. **¹²⁵**Te{**¹** H} NMR (CH**2**Cl**2**): δ 393 (**¹** *J*(**¹⁹⁵**Pt–**¹²⁵**Te) = 862 Hz).

[PtBr2{[18]aneO4Te2}]

This was obtained similarly to the above using PtBr₂. Yield 70% (Found: C, 17.3; H, 2.6. Calc. for C**12**H**24**Br**2**O**4**PtTe**2**: C, 17.1; H, 2.9%). v (Pt–Br)/cm⁻¹: 223. UV/vis (CH₂Cl₂) $\tilde{v}_{\text{max}}/cm^{-1}$ ($\varepsilon_{\text{mol}}/dm^3$ mol⁻¹ cm⁻¹): 36 075 (7310), 30 980 (2670). ¹H NMR (CDCl₃): δ 3.0–4.4(m). ¹⁹⁵Pt NMR (CH₂Cl₂, 223 K): δ –4756. ¹²⁵Te{¹H} NMR (CH₂Cl₂, 223 K): δ 390 (¹J(¹⁹⁵Pt⁻¹²⁵Te) = 690 Hz);

[PdCl2{[18]aneO4Te2}]

Prepared similarly using PdCl₂. Yield 80% (Found: C, 23.3; H, 3.2. Calc. for C**12**H**24**Cl**2**O**4**PdTe**2**1/2Et**2**O: C, 24.1; H, 4.1%). $v(Pd-Cl)/cm^{-1}$: 311, 301. UV/vis (CH₂Cl₂) $\tilde{v}_{max}/cm^{-1}(\varepsilon_{mod}/dm^{3})$ mol⁻¹ cm⁻¹): 30 600 (3900), 25 640 (1775). ¹H NMR (CDCl₃): δ 3.0–4.5 (m). **¹²⁵**Te{**¹** H} NMR (CH**2**Cl**2**, 223 K): δ 375.

$[PdBr_2\{[18] \text{aneO}_4 \text{Te}_2\}]$

Prepared similarly. Orange solid, yield 36% (Found: C, 18.1; H, 3.4; calc. for C**12**H**24**Br**2**O**4**PdTe**2**CH**2**Cl**2**: C, 18.6; H, 3.1%. **¹** H

NMR (CDCl**3**): δ 3.2–4.1 (m), 5.4 (s) CH**2**Cl**2**. **¹²⁵**Te{**¹** H} NMR (CH₂Cl₂): δ 373. *ν*(Pd–Br)/cm⁻¹: 243, 221. UV/vis (CH₂Cl₂) $\tilde{v}_{\text{max}}/\text{cm}^{-1}$ ($\varepsilon_{\text{mol}}/\text{dm}^3$ mol⁻¹ cm⁻¹): 24 630 (4200), 28 900 (7350).

$[PtCl₂{[18]aneO₄Se₂}]$

Made as described for [PtCl**2**{[18]aneO**4**Te**2**}], but using [18]aneO**4**Se**2**. Isolated as a very pale yellow powder, yield 70% (Found: C, 21.3; H, 3.5, N, 1.8. Calc. for C**12**H**24**Cl**2**O**4**PtSe**2**: C, 21.9; H, 3.5%). *ν*(Pt–Cl)/cm⁻¹: 322, 304 cm⁻¹. UV/vis (CH₂Cl₂) $\tilde{v}_{\text{max}}/\text{cm}^{-1}(\varepsilon_{\text{mol}}/\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$: 30 640 (880). ¹H NMR (CDCl₃): δ 3.0–4.4 (m). ¹⁹⁵Pt NMR (CH₂Cl₂): δ -3861. ⁷⁷Se{¹H} NMR (CH₂Cl₂): 259 (¹J(¹⁹⁵Pt–⁷⁷Se) = 550 Hz). H } NMR (CH₂Cl₂): 259 (¹*J*(¹⁹⁵Pt–⁷⁷Se) = 550 Hz).

$[PtCl_{2}$ $[9]$ **aneO**₂ Te $]_{2}$

PtCl₂ (0.05 g, 0.17 mmol) was dissolved in boiling MeCN (100) cm**³**) and [9]aneO**2**Te (0.09 g, 0.35 mmol) in CH**2**Cl**2** (80 cm**³**)- MeCN (20 cm**³**) added slowly. The solution was cooled and stirred overnight. It was then filtered and the filtrate concentrated (10 cm³) and $Et₂O$ (5 cm³) added to produce a greenish– yellow precipitate. This was filtered off and dried *in vacuo*. Yield 0.08 g, 62% (Found: C, 19.8; H, 3.0. Calc. for C**12**H**24**- Cl₂O₄PtTe₂: C, 19.3; H, 3.2%). *ν*(Pt–Cl)/cm⁻¹: 311, 290. UV/vis (CH_2Cl_2) $\tilde{v}_{\text{max}}/cm^{-1}(\varepsilon_{\text{mol}}/dm^3 \text{ mol}^{-1} \text{ cm}^{-1})$: 37940 (10885), 29 205 (368). **¹** H NMR (CDCl**3**): δ 3.0–4.4 (m). **¹⁹⁵**Pt NMR $(CH_2Cl_2): \delta -4501$. $^{125}Te{^1H}$ NMR $(CH_2Cl_2): \delta 394 (^1J(^{195}Pt ^{125}$ Te) = 975 Hz).

$\left[\text{PdCl}_{2}\left\{ [9]\text{aneO}_{2}\text{Te}\right\} _{2}\right]$

Made similarly from PdCl**2** and [9]aneO**2**Te in MeCN. Yield 65% (Found: C, 21.9; H, 3.3. Calc. for C**12**H**24**Cl**2**O**4**PdTe**2**: C, 21.7; H, 3.6%). *ν*(Pd–Cl)/cm⁻¹: 305, 283. UV/vis (CH₂Cl₂) $\tilde{v}_{\text{max}}/\text{cm}^{-1}(\varepsilon_{\text{mol}}/\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$: 30 490 (7810), 26 710 (1862). ¹H NMR (CDCl**3**): δ 2.9–4.3 (m). **¹²⁵**Te{**¹** H} NMR (CH**2**Cl**2**): δ 387.

$[RhCl_2{[18]}$ **aneO₄Te₂}₂**]**Cl**

A solution of $[18]$ ane O_4 Te₂ (0.10 g, 0.2 mmol) in CH_2Cl_2 (20 cm³) was added to a solution of $RhCl₃·3H₂O$ (0.027 g, 0.1 mmol) in EtOH (100 cm**³**) and the mixture stirred at room temperature overnight before concentrating to *ca*. 10 cm**³** . Diethyl ether was added dropwise to form an orange precipitate, which was filtered off and dried *in vacuo*. Yield 0.06 g, 48% (Found: C, 24.5; H, 3.8; calc. for C**24**H**48**Cl**3**O**8**RhTe**4**: C, 24.3; H, 4.1%). **¹** H NMR (CDCl**3**): δ 3.0–4.5 (m). ν(Rh–Cl)/ cm⁻¹: 335, 324. UV/vis (CH₂Cl₂) $\tilde{v}_{\text{max}}/\text{cm}^{-1}$ (ε_{mol}/dm³ mol⁻¹ cm⁻¹): 28 820 (880). ES⁺ mass spectrum *m/z* 1154; calc. for $[C_{24}H_{48}^{35}Cl_2O_8Rh^{130}Te_4]$ ⁺ 1158.

The corresponding PF_6 ⁻ salt was made using a similar reaction in the presence of [NH₄][PF₆] (0.1 mmol) and was spectroscopically very similar.

$[Cu{18}]$ **aneO₄Te₂**}₂]**BF**₄

 $[Cu(MeCN)₄]BF₄$ (0.043 g, 0.14 mmol) was added to a solution of [18]aneO**4**Te**2** (0.15 g, 0.31 mmol) in CH**2**Cl**2** (10 cm**³**) and the mixture stirred at room temperature overnight. The mixture was then concentrated to *ca*. 5 cm³ and precipitated by addition of Et**2**O. The precipitate was filtered off and dried *in vacuo* to produce an orange–brown waxy solid. Yield 0.13 g, 85% (Found: C, 25.3; H, 4.3; calc. for C**24**H**48**BCuF**4**O**8**Te**4**: C, 25.6; H, 4.3%). **¹** H NMR (CDCl**3**): δ 2.9 (t) [H] CH**2**Te, 3.6 (s), 3.8 (t) [4H] CH**2**O. **¹²⁵**Te{**¹** H} NMR (CH**2**Cl**2**): δ 166. **⁶³**Cu NMR (with excess [18]aneO₄Te₂ added): δ -59. IR (CsI disk)/cm⁻¹: 1080vs br, 524m. ES⁺ mass spectrum: m/z 1039; calc. for $[C_{24}H_{48}]$ $^{130}Te_4$ ⁺ 1047.

$[Ag{(18]aneO₄Te₂},]BF₄$

A solution of $AgBF_4$ (0.027 g, 0.15 mmol) was added to a solution of [18]aneO₄Te₂ (0.15 g, 0.31 mmol in CH₂Cl₂ (10 cm³) and the mixture stirred at room temperature in a foil-wrapped flask for 2 h. The solution was concentrated to *ca*. 5 cm³ and pipetted into Et₂O to give an pale orange solid. Yield 0.115 g, 72% (Found: C, 25.3; H, 4.3; calc. for: C**24**H**48**AgBF**4**O**8**Te**4**: C, 24.6; H, 4.1%). **¹** H NMR (CDCl**3**): δ 2.95 (m) [H] CH**2**Te, 3.55 (m), 3.85 (m) [4H] CH₂O. ¹²⁵Te{¹H} NMR (CH₂Cl₂): δ 140 ($w_{1/2}$) $= 1500$ Hz). IR (CsI disk)/cm⁻¹: 1086vs, 526m. ES⁺ mass spectrum: m/z 1085; calc. for $[C_{24}H_{48}^{109}AgO_8^{130}Te_4]^+$ 1093.

X-Ray crystallography

Details of the crystallographic parameters are given in Table 4. Crystals of $[PtCl₂{[18]aneO₄Se₂]}$ and $[PdCl₂{[18]aneO₄Te₂]}$ were grown by slow evaporation from a solution of the complex in CH₂Cl₂, while crystals of $[PtCl₂{(18]$ ane $O₄Te₂}]$ were from slow evaporation from a solution in MeOH. Data collection used a Nonius CCD diffractometer equipped with an Oxford Systems open-flow cryostat operating at 120 K, using graphitemonochromated Mo–Ka X-radiation (λ = 0.71073 Å). Structure solution and refinement were generally routine,**35–38** although the quality of the data for the two telluroether complexes were better than for the selenoether derivative.

CCDC reference numbers 207103–207105.

See http://www.rsc.org/suppdata/dt/b3/b303365c/ for crystallographic data in CIF or other electronic format.

Acknowledgements

We thank EPSRC for support and Johnson-Matthey plc for the loan of the precious metal salts, and Dr M. E. Light for assistance with the X-ray data processing.

References

- 1 For a recent review, see: W. Levason, S. D. Orchard and G. Reid, *Coord. Chem. Rev.*, 2002, **225**, 159.
- 2 W. Levason, S. D. Orchard and G. Reid, *Inorg. Chem.*, 2000, **39**, 3853.
- 3 A. J. Barton, J. Connolly, W. Levason, A. Mendia-Jalon, S. D. Orchard and G. Reid, *Polyhedron*, 2000, **19**, 1373.
- 4 W. Levason, S. D. Orchard, G. Reid and J. M. Street, *J. Chem. Soc., Dalton Trans.*, 2000, 25.
- 5 A. J. Barton, W. Levason, G. Reid and A. J. Ward, *Organometallics*, 2001, **20**, 3644.
- 6 M. Hesford, W. Levason, S. D. Orchard and G. Reid, *J. Organomet. Chem.*, 2002, **649**, 214.
- 7 W. Levason, S. D. Orchard and G. Reid, *Chem. Commun.*, 2001, 427; M. J. Hesford, W. Levason, M. L. Matthews, S. D. Orchard and G. Reid, *Dalton Trans.*, 2003, 2434.
- 8 R. M. Izatt, J. J. Christensen Synthetic Multidentate Macrocyclic Compounds, Academic Press, NY. 1978, Chapter 2; J. Dale, G. Borgen and K. Daasvatn, *Acta Chem. Scand., Ser. B.*, 1974, **28**, 378; J. S. Bradshaw, J. Y. Hui, B. L. Haymore, J. J. Christensen and B. M. Izatt, *J. Heterocycl. Chem.*, 1973, **10**, 1.
- 9 A. J. Blake and M. Schröder, *Adv. Inorg. Chem.*, 1990, **35**, 1.
- 10 H. Higuchi, K. Tani, T. Otsuro, Y. Sakata and S. Misumi, *Bull. Chem. Soc. Jpn.*, 1987, **60**, 4027.
- 11 J. R. Dann, P. P. Chiesa and J. W. Gates, *J. Org. Chem.*, 1961, **26**, 1991.
- 12 T. Rottgers and W. S. Sheldrick, *Z. Anorg. Allg. Chem.*, 2002, **628**, 1305; T. Rottgers and W. S. Sheldrick, *Z. Anorg. Allg. Chem.*, 2001, **627**, 1976.
- 13 A. Y. Nazarenko and E. B. Rusanov, *J. Coord. Chem.*, 1995, **34**, 265.
- 14 R. M. Izatt, G. Wu, W. Jiang and N. K. Dalley, *Inorg. Chem.*, 1990, **29**, 3828.
- 15 A. A. Dvorkin, Yu. A. Simonov, T. I. Malinovski, S. V. Pavlova and L. I. Budarin, *Russ. J. Inorg. Chem.*, 1989, **34**, 1481.
- 16 S. T. Malinovskii, Yu. A. Simonov, T. I. Malinovskii and A. N. Boiko, *Zh. Strukh. Khim.*, 1986, **27**, 113.
- 17 A. A. Dvorkin, Yu. A. Simonov, L. I. Budarin, E. V. Fesenko and V. N. Kalinin, *Kristallografiya*, 1990, **35**, 1460.
- 18 K. B. Yarsimirski, V. A. Bidzilya and A. N. Boiko, *Russ. J. Inorg. Chem.*, 1982, **27**, 85.
- 19 B. Metz, D. Moras and R. Weiss, *J. Inorg. Nucl. Chem.*, 1974, **36**, 785.
- 20 C. W. McDaniel, J. S. Bradshaw, K. H. Tarbet, G. C. Lindh and R. M. Izatt, *J. Incl. Phenom. Mol. Recog. Chem.*, 1989, **7**, 545.
- 21 Y. Takaguchi, E. Horn and N. Furukawa, *Organometallics*, 1996, **15**, 5112.
- 22 E. G. Hope, T. Kemmitt and W. Levason, *Organometallics*, 1988, **7**, 78.
- 23 W. Farrar and J. Gulland, *J. Chem. Soc.*, 1945, 11.
- 24 N. P. Luthra and J. D. Odom, in *The Chemistry of Organic Selenium and Tellurium Compounds*, ed. S. Patai and Z. Rappoport, Wiley, NY, 1986, vol. 1, ch. 3.
- 25 T. Kemmitt and W. Levason, *Inorg. Chem.*, 1990, **29**, 731.
- 26 T. Kemmitt, W. Levason and M. Webster, *Inorg. Chem.*, 1989, **28**, 692.
- 27 D. M. A. Minahan, W. E. Hill and C. A. McAuliffe, *Coord. Chem. Rev.*, 1984, **55**, 31.
- 28 A. K. Singh, M. Kadarkaraisamy, S. Husebye and K. W. Tornroos, *J. Chem. Res. (S)*, 2000, 64.
- 29 T. Kemmitt, W. Levason, R. D. Oldroyd and M. Webster, *Polyhedron*, 1992, **11**, 2165.
- 30 W. Levason, G. Reid and V-A. Tolhurst, *J. Chem. Soc., Dalton Trans.*, 1998, 3411.
- 31 D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray and G. L. Marshall, *J. Chem. Soc., Dalton Trans.*, 1985, 1265.
- 32 W. Levason, S. D. Orchard, G. Reid and V-A. Tolhurst, *J. Chem. Soc., Dalton Trans.*, 1999, 2071.
- 33 J. R. Black and W. Levason, *J. Chem. Soc., Dalton Trans.*, 1994, 3225.
- 34 J. R. Black, N. R. Champness, W. Levason and G. Reid, *J. Chem. Soc., Dalton Trans.*, 1995, 3439.
- 35 PATTY, The DIRDIF Program System, P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, Technical Report of the Crystallography Laboratory,University of Nijmegen, The Netherlands, 1992.
- 36 TeXsan: Crystal Structure Analysis Package, Molecular Structure Corporation, Texas, 1995.
- 37 SHELXL-97: Programme for crystal structure refinement: G. M. Sheldrick, University of Göttingen, 1997.
- 38 H. D. Flack, *Acta Crystallogr., Sect. A*, 1983, **39**, 876.